MBI Videos

Suzanne Robertson

  • video photo
    Suzanne Robertson
    Outbreaks of vector-borne diseases such as Zika virus can occur after an infected individual introduces the virus to a residential neighborhood after traveling. Management strategies for controlling vector-borne disease typically involve large-scale application of larvicide or adulticide by truck or plane, as well as door-to-door control efforts that require obtaining permission to access private property. The efficacy of the latter efforts depend highly on the compliance of local residents. We present a model for vector-borne disease transmission in a neighborhood, considering a network of houses connected via mosquito dispersal. We use this model to compare the effectiveness of various control strategies and determine how optimal use of door-to-door control and aerial spraying depends on the level of resident compliance as well as mosquito movement. This is joint work with Jeffery Demers, Sharon Bewick, Folashade Agusto, Kevin Caillouet, and Bill Fagan.
  • video photo
    Suzanne Robertson

    West Nile virus (WNV) is a major public health concern in the United States. While seasonal WNV outbreaks have been widely observed to be associated with the end of the avian nesting season, the ecological mechanisms responsible for this synchronicity are poorly understood. Newly hatched birds, or nestlings, have less feather coverage and fewer defense mechanisms than older birds, rendering them more vulnerable to mosquitoes. While total avian population size increases throughout the season, nestling abundance declines at the end of the brooding season. We investigate how this temporal variation in host stage abundance may structure enzootic WNV transmission with a novel mathematical model incorporating avian (host) stage-structure and within-species heterogeneity in the form of stage-specific mosquito (vector) biting rates. We determine the extent to which temporal fluctuations in host stage and vector abundance throughout the season, along with the differential exposure of these stages to mosquito bites, affects the timing and magnitude of WNV activity as well as implications for public health interventions. Specifically, we explore the viability of nestling vaccination as a new form of control in addition to the widely used controls of mosquito larvicide and adulticide.

View Videos By